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Inferring genetic networks from gene expression data is the most challenging work in the post-
genomic era. However, most studies tend to show their genetic network inference ability by using
artificial data. Here, we developed the fuzzy adaptive resonance theory associated matrix (F-ART
matrix) method to infer genetic networks and applied it to experimental time series data, which
are gene expression profiles of Saccharomyces cerevisiae responding under oxidative stresses such
as diamide, heat shock and H

2
O

2
. We preprocessed them using the fuzzy adaptive resonance the-

ory and successfully identified genetic interactions by drawing a 2-dimensional matrix. The iden-
tified interactions between diamide and heat shock stress were confirmed to be the common inter-
actions for two stresses, compared with the KEGG metabolic map, BRITE protein interaction
map, and gene interaction data of other papers. In the predicted common genetic network, the hit
ratio was 60% for the KEGG map. Several gene interactions were also drawn, which have been
reported to be important in oxidative stress. This result suggests that F-ART matrix has the po-
tential to function as a new method to extract the common genetic networks of two different
stresses using experimental time series microarray data.

[Key words: genetic network, fuzzy adaptive resonance theory, gene expression profile, clustering, oxidative 
stress]

Rapid advances in DNA microarray technologies over
the last several years have made it possible to measure the
expression levels of thousands of genes simultaneously
under different conditions. The data obtained by microarray
analysis are called expression profile data. Many research-
ers have tried to extract correlated genes from these data by
just clustering and without a priori knowledge. If genetic
networks could be drawn from these data, we would be able
to prioritize target genes for the development of medicinal
compounds such as metabolic inhibitors, anticancer drugs,
and so on. Thus, the identification of genetic networks is
significant and important. However, the candidates of gene
interactions are too numerous to be identified by experi-
mental methods. For the selection of gene interactions,
computational methods are now being investigated. Several
methods for identifying genetic networks have been pro-
posed, including a qualitative model (1), statistic model (2),
hybrid model (3), and Boolean model (2). A standard
method for determining a genetic network has not yet been
established. Most studies tend to show their genetic network
inference ability by using artificial data, while only a few
have used the raw data in their analyses. In the present
paper, we report the inference of genetic interactions with-
out a priori knowledge. We have applied a fuzzy adaptive
resonance theory associated matrix (F-ART matrix) method
to time series microarray data of oxidative stress in Sac-

charomyces cerevisiae to infer to the genetic network.

MATERIALS AND METHODS

Data processing We used gene expression profile data from
a yeast microarray (4), which includes 6152 genes. In the present
paper, S. cerevisiae DBY7286 was grown at 25�C to early-log
phase, and then the cells were exposed to different oxidative
stresses such as diamide (0.3 mM), heat shock (37�C) and H

2
O

2

(0.3 mM). Time series data were collected at arbitrary intervals as
shown in Table 1. The expression ratio Rt of each gene is defined
as follows.

(1)
Fuzzy adaptive resonance theory (Fuzzy ART) model

In the present paper, fuzzy adaptive resonance theory (Fuzzy ART)
(5) was used as a modeling method that enables one to decrease the
number of time course gene expression patterns for the simplicity
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mRNA measured at time t

mRNA measured just before culture was exposed to stresses

TABLE 1. List of sampling times for each stress

Stress Sampling times (min)

Heat shock 0, 5, 15, 30, 60
H

2
O

2
0, 10, 20, 30, 40, 50, 60, 80, 100, 120, 160

Diamide 0, 5, 10, 20, 30, 40, 50, 60, 90

Time series microarray data used here were reported by Gasch et al.
(4). S. cerevisiae DBY7286 was grown at 25�C to early-log phase in
YPD culture and then each culture was exposed to different stresses
(oxidative stresses). Samples for time series microarray were collected
at each stress.
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of implementation. Fuzzy ART has superior robustness and cor-
rectness compared with other clustering methods. Briefly, the
learning procedure for Fuzzy ART is described below.

Fuzzy ART includes an input vector I, a weight vector Wj of
category j, a choice parameter �, a learning rate parameter �, a
vigilance parameter �, a choice function Tj, and a match function
Mj (5). Input vector I has a dimension corresponding to sampling
points. First of all, an input vector itself is provided as a weight
vector.

As a first step, a winner category for each input I is determined
as follows. The choice function Tj of category j is defined as Eq. 2,
which indicates the similarity between I and Wj based on Wj.

Tj� (2)

where the minimum operator � is “and” operator in fuzzy theory
and the operator  is the sum of its components. The category j
that has the maximal Tj is defined as the “winner” category for in-
put I.

As a next step, the category selected above is judged to follow
the “resonance” procedure or “mismatch reset” procedure by the
match function defined in the following equation.

Match function� (3)

“Resonance” procedure is carried out if the match function of
the winner category for input I is bigger than �; that is expressed as

� � (4)

The match function indicates the similarity between I and Wj

based on I. When the “resonance” procedure should be done,
learning of the weight vector of the winner category is performed.

Learning of the weight vector Wj is updated according to the fol-
lowing equation.

Wj
new

� �(I Wj
old)� (1� �)Wj

old (5)

Otherwise, if the match function of the winner category for
input I is lower than �, the “resonance” procedure is not done and
the “mismatch reset” procedure is carried out. A new category that
has the next maximal Tj is chosen by Eq. 2 again. When any cate-
gory cannot satisfy Eq. 4, a new category is generated according to
input vector I.

These steps mentioned above are continued until every input
vector I is assigned to a category.

Clustering gene expression data Gene expression data were
clustered by Fuzzy ART (5). In this clustering step, we carried out
the screening of the genes, which are related to oxidative stress and
show strong expression, as well as clustering. First of all, in order
to focus on genes relating to oxidative stress, 55 genes were se-
lected as the candidate genes responding to oxidative stress, which
appear on the five metabolic maps of the Kyoto Encyclopedia of
Genes and Genomics (KEGG) (Table 2). Expression data of these
genes were utilized in Fuzzy ART analysis. The ranges of log

2
Rt of

the selected genes were from �3.88 to 5.06, and the genes were
normalized from 0.0 to 1.0 to be used as the input data for the
fuzzy operator.

Generally, the number of clusters is arbitrarily determined by
the analyst. In the present paper, the optimal clustering index
(OCI) was defined to objectively optimize the cluster number.

(6)

I Wj�

� Wj+
---------------------

x

I Wj�

I
--------------------

I Wj�

I
-------------------- OCI�

Number of clusters
�

Total gap index

Maximum number of clusters 
(number of input patterns)

Maximum total gap index in 
the case that the number of 

clusters is one

�

FIG. 1. Proposed genetic network inference scheme. Gene expression data were categorized by Fuzzy ART (Fig. 1A, B). To predict genetic in-
teractions, we differentiated the weight vectors (Fig. 1C). We then arranged the clusters in order of the maximum gradient points of the differen-
tiated patterns, and we assumed that genes in the earlier clusters influence ones in the same or later clusters (Fig. 1D). Next, we made a 2-dimen-
sional matrix with two kinds of stresses to determine the common reacting gene interaction, and extracted the common gene network (Fig. 1E).
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The gap index has been defined by us (5) and it corresponds to
the distribution of profiles at each time. The total gap index is the
sum of the gap indexes at each time for each cluster. The smaller
OCI becomes, the better that clustering condition is. The numbers
of clusters became 10 (diamide), 10 (heat shock) and 10 (H

2
O

2
),

respectively. After clustering, we discarded some clusters with low
expression, in which the weight vector was less than 2.0-fold in the
expression level during the time course in the following analysis.
Here, the weight vectors are the synthesized representative pattern
in a cluster through the learning of time series gene expression
data. Consequently, the numbers of clusters became 7 (diamide), 8
(heat shock) and 9 (H

2
O

2
), respectively (Fig. 1A, B).

To determine the expression order of the genes, the weight vec-
tors were differentiated by time (Fig. 1C), and then the differen-
tiated weight vectors are interpolated by the B-spline interpolation
(6), and the maximum gradient points are determined. As pre-
processing before genetic interaction analysis, we introduced the
cut-off distance D and postulated that two clusters should be com-
bined if the distance between two maximum gradient points of
clusters is smaller than D, since it is highly possible that these two
clusters are controlled by the same gene. In the present paper, we
used 1.1 min for the cut-off distance D, and 5, 5, and 6 clusters
were isolated for diamide, heat shock and H

2
O

2
, respectively, to be

used in the following analysis.
Inference of gene interactions by F-ART matrix To infer

the gene interaction, one hypothesis was made; a gene that has an
earlier maximum gradient point in the gene expression pattern will
influence a gene in the same cluster or a gene with a proximate
maximum gradient point. Therefore, we arranged the clusters in
order of the maximum gradient points of differentiated patterns
(Fig. 1D).

To extract the common genetic interaction between two stresses,
we constructed a 2-dimensional matrix in which the cluster genes
for each stress are located in a time series on columns or lines (Fig.
1E). In the two stresses, the clusters constructed were different;
cluster 2 of stress A consists of genes 4 and 5 and cluster 2 of
stress B consists of genes 5 and 8 (Fig. 1E). We focused on the
common genes in the two stresses. In the 2-dimensional matrix
(Fig. 1E), the intersectional cell between the column containing the
gene in stress A and the line containing the same gene in stress B
was selected and the name of the gene was inserted in. This opera-
tion was applied to all of the genes, resulting in determination of
the position of the common genes on two independent stresses.
Next, an arbitrary cell containing any common gene was focused.
The cell is adjacent to eight other cells. We assumed that the genes
can interact with the other genes belonging to the same cell and the
genes containing only adjacent three cells, which are located on
the right side, down side and right-down side (Fig. 1E). Thus, all of
the interactions were extracted from this matrix as inferred inter-
actions. The inference results were evaluated as follows.

Evaluation method for inferred genetic interaction We
used the KEGG metabolic map to evaluate the inference result
from the F-ART matrix method. KEGG is a metabolic map draw-
ing metabolite flow, not a genetic interaction map. Therefore, we
defined the following criteria (Fig. 2) to evaluate the inference
result by using the metabolic map. When a genetic interaction be-
tween gene A and gene B was estimated by the F-ART matrix
method, we assumed that the estimated interaction was correct if
the following biological or genetical findings on these two genes
were present; (i) the adjacent rule; an enzyme from effector gene A
can produce the substrate for acceptor gene B (gene A is adjacent
to gene B in metabolic map), (ii) the broad adjacent rule; an en-
zyme from effector gene A can produce the substrate A for an en-
zyme from mediator gene C and an enzyme from gene C can pro-
duce the substrate C for acceptor gene B (gene A is adjacent to
gene B, interposing gene C between genes A and B), and (iii) the

homologous rule; two proteins from two genes can form a complex
or are homologous.

To evaluate the inference result, we introduced two parameters;
the hit and folding ratios.

Hit ratio�

(7)

This parameter corresponds to the ratio of correct interactions in
inferred genetic interactions. The larger it becomes, the better that
inferred result is.

Folding ratio�

(8)

This parameter corresponds to the degree of screening. The
higher it becomes, the better that inferred result is.

RESULTS AND DISCUSSION

Identification of vigilance parameter for Fuzzy ART
We selected 55 genes (Table 2) from the database. Before
clustering, the effect of a vigilance parameter on Fuzzy

FIG. 2. Criteria for matching with metabolism map and genetic
network. To compare the inferred genetic interaction and KEGG meta-
bolic map, we defined three criteria, assuming that the estimated inter-
action was correct if the following biological or genetical findings on
these two genes were present; (A) adjacent rule: an enzyme from an
effector gene A can produce the substrate for acceptor gene B (gene A
is adjacent to gene B in metabolic map); (B) broad adjacent rule: an
enzyme from an effector gene A can produce the substrate A for an en-
zyme from mediator gene C and an enzyme from gene C can produce
the substrate C for acceptor gene B (gene A is adjacent to gene B, in-
terposing gene C between genes A and B); (C) homologous rule: two
proteins from two genes can form a complex or are homologous. Gene
A, Effector gene product; gene B, acceptor gene product; gene C, in-
terposing gene.

The matching gene interactions in gene interaction map from KEGG

All inferred gene interactions

All interactions on common gene of two stresses
(
n
P
2
: n� the number of common genes)

Interaction selected by F-ART matrix



GENETIC NETWORK BY F-ART MATRIX METHODVOL. 96, 2003 157

ART clustering was investigated. The number of generated
clusters increased when a relatively higher vigilance parame-
ter was used. Figure 3 shows the number of clusters gener-
ated under various vigilance parameters. Referring to heat
shock, when the vigilance parameter was less than 0.95, the

number of generated categories was only slightly affected
by the vigilance parameter. With the range over 0.95, the
sensitivity of the vigilance parameter increased sharply. The
lower the number of clusters and the distribution of profiles
clustered are, the better the clustering is. To extract the opti-

TABLE 2. List of stress response genes selected in this study

Name ORF
Stressa

Metabolic mapb

Diamide Heat shock H
2
O

2

NIT2 YJL126W Cyanoamino acid
FOX2 YKR009C � � Cyanoamino acid
ECM38 YLR299W � � � Cyanoamino acid, glutathione taurine and 

hypotaurine
ASP1 YDR321W � � Cyanoamino acid
ASP3-1 YLR155C Cyanoamino acid
ASP3-2 YLR157C Cyanoamino acid
ASP3-3 YLR158C Cyanoamino acid
ASP3-4 YLR160C Cyanoamino acid
SHM1 YBR263W Cyanoamino acid
SHM2 YLR058C � � Cyanoamino acid
AMD2 YDR242W Cyanoamino acid
CHA1 YCL064C Cysteine
SED1 YIL167W � � Cysteine
SDL1 YIL168W Cysteine
AAT1 YKL106W Cysteine, glutamate
AAT2 YLR027C Cysteine, glutamate
YNL247W YNL247W Cysteine
YFR055W YFR055W Cysteine
YGR012W YGR012W Cysteine
MET17 YLR303W � � � Cysteine
STR2 YJR130C � � Cysteine
YML082W YML082W Cysteine
CYS3 YAL012W Cysteine
UGA1 YGR019W � � Glutamate
GDH2 YDL215C Glutamate
GDH3 YAL062W Glutamate
GDH1 YOR375C Glutamate
YDR111C YDR111C � � Glutamate
YLR089C YLR089C Glutamate
GLT1 YDL171C Glutamate
GSH2 YOL049W Glutamate, glutathione
GSH1 YJL101C Glutamate, glutathione
YGL245W YGL245W Glutamate
MSE1 YOL033W Glutamate
GAD1 YMR250W � � � Glutamate, taurine and hypotaurine
GLN1 YPR035W Glutamate
GFA1 YKL104C Glutamate
ADE4 YMR300C Glutamate
QNS1 YHR074W Glutamate
GUA1 YMR217W � � � Glutamate
GNA1 YFL017C Glutamate
URA2 YJL130C Glutamate
CPA2 YJR109C � � Glutamate
CPA1 YOR303W � � Glutamate
PUT2 YHR037W Glutamate
UGA2 YBR006W � � � Glutamate
GLR1 YPL091W Glutamate, glutathione
GLN4 YOR168W Glutamate
GPX2 YBR244W � � Glutathione
GPX3 YIR037W � � � Glutathione
GPX1 YKL026C � � Glutathione
ZWF1 YNL241C � � � Glutathione
IDP1 YDL066W Glutathione
IDP2 YLR174W Glutathione
IDP3 YNL009W Glutathione
a Selected genes in each stress are marked.
b Metabolic map in KEGG, in which each gene is described.
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mal vigilance parameter, we defined OCI (Eq. 6) and OCI
values were calculated under various vigilance parameters
(Fig. 4). As shown in Fig. 4, the optimal vigilance parame-
ters were 0.95 (diamide), 0.94 (heat shock) and 0.93 (H

2
O

2
),

respectively. In the same way, the curve of cluster number
described in Fig. 3 was smoothed by B-spline interpolation.
When the smoothing curve was utilized for determining the
optimal vigilance parameter, very similar results were ob-
tained, that is 0.943 (diamide), 0.944 (heat shock) and 0.924
(H

2
O

2
), respectively. Therefore, the optimal parameter from

the former method was used.
By minimizing OCI, the numbers of clusters became 10

(diamide), 10 (heat shock) and 10 (H
2
O

2
), respectively. As

shown in Fig. 4, the minimum OCI values were 0.47 (di-
amide), 0.51 (heat shock) and 0.65 (H

2
O

2
), respectively.

This means that H
2
O

2
 stress consisted of time course data

with a relatively high level of noise such as experimental
error. Indeed, the total gap indexes of the clusters con-

structed were 9.3 (diamide), 6.0 (heat shock), and 14.5
(H

2
O

2
), and a cluster with a gap index of 9.0 existed in H

2
O

2

stress. After clustering, the clusters with low expression, in
which the weight vector was less than 2.0-fold in the ex-
pression level, were discarded.

Consolidation of clusters by cut-off distance D As a
result of Fuzzy ART, 7, 8, and 9 clusters were isolated for
diamide, heat shock and H

2
O

2
, respectively. The remaining

genes are marked in Table 2. As shown in Table 2, 13 genes
for diamide, 14 genes for heat shock, and 16 genes for H

2
O

2

remained, and they were used for the F-ART matrix
method. In the case of diamide and heat shock stress, 9
genes existed as the common genes as shown in Table 2.

Next, the maximum gradient points were determined by
differentiation of the weight vectors (Fig. 5). Figure 5 shows
the time at the maximum gradient point. It is noted that
there were some clusters which must be consolidated since
the time at the maximum gradient point is very close. In the
case of heat shock stress, it is preferable to regard clusters
no. 1 and 2, and clusters no. 3, 4, and 5 as the same cluster
(Fig. 5). Even when the vigilance parameter was varied,

FIG. 3. Effect of vigilance parameter on the number of clusters
generated by Fuzzy ART (choice parameter �: 0.1 and learning rate
parameter �: 0.01). (A) Diamide stress, (B) heat shock stress, (C) H

2
O

2

stress.

FIG. 4. Comparison of OCI on various vigilance parameters. (A)
Diamide stress, (B) heat shock stress, (C) H

2
O

2
 stress.
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these clusters were never consolidated. Therefore, we de-
fined the cut-off distance D as mentioned in the Materials
and Methods. As a result, the cut-off distance D was defined
to be 1.1 min. After consolidation, the number of clusters
became 5 (clusters 1�2, 3�4�5, 6, 7, and 8) from 8 in the
case of heat shock. At the step of inference by 2-dimen-
sional matrix, each consolidated cluster was positioned in
the independent column or line.

Inference of genetic networks By applying the F-ART
matrix method to the time series microarray data with the
oxidative stresses (diamide, heat shock and H

2
O

2
), 2-dimen-

sional matrix was constructed. Here, the cluster genes for
each stress are located in a time series on columns or lines
and only the order of gene expression was considered for
the simplified analysis. The time scale is not significantly
different (Table 1). In the case that data with quite different
time scale should be compared, the interpolation of time
course pattern using spline function will be available and
the matrix in which expression time is considered well
should be constructed.

The case of diamide and heat shock stress is described in
Fig. 6. Since 5 clusters were constructed from Fuzzy ART
in these two stresses, the 2D matrix consisted of 5 columns
and 5 lines. In this case, 9 common expression genes were
inserted into the intersectional cell. The gene gad1 was
located in the hatched cell, and the interactions with ecm38,
uga1, uga2, and zwf1 were estimated.

The common genetic interactions were extracted from
this procedure. The combination of diamide–heat shock
(Fig. 7A), H

2
O

2
–diamide (Fig. 7B) and H

2
O

2
–heat shock

(Fig. 7C) are shown. In Fig. 7, the characters with circle, m,
p and g, indicate the databases referred to for evaluation;
metabolic interactions of KEGG, protein interactions of Bio-
molecular Relations in Information Transmission and Ex-
pression (BRITE: http://www.genome.ad.jp/brite/), and ge-
netic interactions reported by Coleman et al. (7). In particu-
lar, g with a circle indicates the interactions between gad1
and uga1 or uga2 are important genetic networks for oxida-

tive stress. The interaction has been proven to occur via
�-aminobutyric acid (GABA) as a second messenger, which
is formed from L-glutamate by enzyme reaction of gad1
product and can induce the gene expression of uga1 and
uga2 (7). In H

2
O

2
 stress, microarray data of uga1 was in-

complete time course data and the data could not be applied
to Fuzzy ART. Therefore, the absence of an interaction from
gad1 to uga1 was obtained in Fig. 7B and 7C. As briefly
summarized, similar interactions were described in three
combinations. However, the following particular interac-

FIG. 5. Time at the maximum gradient point for each cluster (heat
shock). Vigilance parameter for clustering: 0.94.

FIG. 6. Two-dimension matrix (diamide–heat shock).

FIG. 7. Inferred genetic network. (A) Diamide–heat shock, (B)
H

2
O

2
–diamide, (C) H

2
O

2
–heat shock.
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tions were found; for example, the interaction from gpx2 to
gad1 does not occur under heat shock stress, and the inter-
action from ecm38 to gad1 does not occur under H

2
O

2
 stress

(gad1 expression was significantly earlier than ecm38).
Next, we calculated the hit ratio and folding ratio for the
inferred genetic network (Table 3). As shown in Table 3, the
hit ratio increased and the interactions decreased by using
F-ART matrix. The folding ratios ranged from 4 to 11. The
hit ratios of “diamide–heat shock” and “H

2
O

2
–diamide”

were very high and were 0.44 and 0.60, respectively. On the
other hand, the number of inferred interactions of “H

2
O

2
–di-

amide” was low and the hit ratio of “H
2
O

2
–heat shock” was

also low. This may be because H
2
O

2
 stress included data

with a large degree of noise. As described above, the gap in-
dex of clusters constructed for H

2
O

2
 stress was the highest

among the three stresses and a cluster with a gap index of
9.0 was constructed.

As mentioned above, important stress responsible inter-
actions in the two stresses were extracted. The F-ART ma-
trix method proposed here is superior for this purpose. If the
responsible interaction against three independent stresses
would be extracted directly, a 3D matrix should be drawn.
This expansion is easy to develop. In the present paper, we
attempted a direct comparison of the three stresses. Only 2
interactions consisting of 3 genes, such as gad1 to uga2 and
gad1 to ecm38, remained after the analysis. This means that
the three stresses are too different to extract any common re-
sponses.

In the present paper, we focused on the common genes in
two stresses to extract important stress responsible inter-
actions. This is due to the hypothesis that sequential gene
expression will be conducted under any stress if a genetic
interaction exists between genes A and B. On the other
hand, other genes, except common genes, are specifically
induced under the stress. For example, the interaction from
gpx2 to gad1 was only obtained in the combination of
H

2
O

2
–diamide, as mentioned above. Gene expression of

gpx2 was induced in the diamide and H
2
O

2
 stresses, but not

the heat shock stress. Since Sugiyama et al. (8) reported that
the gpx2 gene was not induced in heat shock stress although
the gene encodes a glutathione peroxidase 2 that is closely
related to oxidative stress, it is reasonable that the relation-
ship was not found as a common genetic interaction in Fig.
7.

Figure 7 shows the inferred genetic network, which con-
sists of the common genetic interactions. In the inferred
genetic network, several gene interactions were found to be

important in oxidative stress. Several interactions coincided
well with responsible networks already reported by other re-
searchers or other databases. Our result suggests that F-ART
matrix has the potential to function as a new method for pri-
mary screening of common genetic networks of two differ-
ent stresses using experimental time series microarray data.
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